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A POLYNOMIAL RATE OF GROWTH
FOR THE MULTIPLICITIES
IN COCHARACTERS OF MATRICES

BY
AMITAI REGEV

ABSTRACT

The sum of the multiplicities m,. as well as each m,, in the cocharacter x, (F, ) of
the k X k matrices, have an upper bound of a polynomial rate of growth. Some
have a lower bound which is also of a polynomial rate of growth.

Introduction

Let F be a field of characteristic zero, Fy the k X k matrices over F and let
X (Fi)=Z,cr.mmx, be its n-th cocharacter [4]. The inequality m, =
(wi+ D (w:2— 1) (w:+ 1) [4, theorem 3.22], proved for F-, yields a lower bound
for m, which, as a function of n, has a polynomial rate of growth. Thus most
m,’s, and therefore also =, m,, have a lower bound of a polynomial rate of
growth.

The purpose of this paper is to produce, for any Fi, upper and lower bounds of
similar nature for =, m,. Thus the main result here is Theorem 4.5, which does
exactly this.

Section 2 studies and compares linearization with substitutions, as FS, right
module homomorphism. Sections 1, 3 generalize and strengthen [4, §1, 3]. In
particular, Theorem 3.1 characterizes the m,’s in a cocharacter. These results,
together with [6, theorem 8] and with the asymptotic results of {S] and [7], allow
us to prove our main result.

§1. Adding tableaux

The “gluing together” of two tableaux [4, §1] is now generalized.
Let A =(ai," ", a, )€ Par(m) and write

A=(W|+'"+W,,W2+"'+W,,"',W,):
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the Young diagram D, is made of j X w; rectangles. To emphasize the “block”
structure of A we introduce the notation

A:(W|+"'+W,,"‘,W,)d=ef<w,,‘",W|> (mzz]wl)
=t

ExamrLE. Par(12)3 1 =(5,3,3,1)=(1,2,0,2).

Note: Some of the w;’s, in particular w,, can be zero. Also, {(w,, -, w)) =
©,---,0,w,,---,wy). Thus, given A €Par(m), u € Par(n), we can write A =
(w,,~--,w)and w ={w,,-- -, w;). One can then add A and pu.

DefFINITION 1.1. Let A ={w,,---,w)EPar(m), u =(w,, -, wi)E Par(n)
and define A +u €EPar(m +n) by A +u =(w, +w,,- -, w,+wi). Let m=],
A EPar(m), vePar(l). We say that A=v if v=A+pu for some
@ € Par(l — m). Equivalently,

<W,,"',W1)§(U,,"‘,U[) lf wiévn j:15.”vr-

Two arbitrary tableaux T,, T, can be added to yield a tableau on A + u. The
relation between the three corresponding idempotents is then studied.

DEeFiNiTION 1.2, Let A =(w,, -+, w) &€ Par(m) and T, a corresponding tab-
leau. The block of columns of height j in T, forms a j X w; rectangle which we
denote by B; (B, = if w; =0). Now write T, = (B,,B,_i, --,B)). Let T, =
{B;,+-,B1), w&Par(n) be a second tableau. The entries of T, +m =
(Bi+m,--,Bi+m)are{m +1,---,m + n}, hence disjoint from those of T,, i.e.

from {1,---, m}. Thus

T, + (T, +m) = (B, |(B{+m), -, B,|(Bi+ m))

1s a tableau on A + p.

Examee. T, =[4]2[3], B.=[2]3], B-=4, B,=[4].
5 S ]
n n
Let T, =[2]3] . then T, +5=[7]8] and T, +(T. +5)=[4]7]2]3[8]-
1 % | 516
1]

Let «(T.)={xi,*--,«.} denote the set of columns of the tableau T,, v €
Par(k). Let S(xi)C S« denote the permutations of its entries, so Cr, =
X¢.18(x;). Clearly, (T, +(T, +m))=A,U A, (disjoint union) with A,=
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k(T,) (entries: 1,---,m) and A,=«(T, +m) (entries: m +1,---,n). Thus
CTA+(T“+m)= CTA X C(T‘;i»m)- AS in [4, 14], thlS lmplles that

8rmrm) (X1, 5 Xmin) = g, (X100 55 Xm ) * 81, (Xm1s ™+ Xoman)-

With the proofs of {4, 1.5, 1.6] unchanged, we now have the following, more
general

THEOREM 1.3. Let A €Par(m), u € Par(n), then

ersom(y)=d - en(y) er,(y)
for some (integer) d = 1.

CoroLLARY 1.4, Let A €Par(m), T,,---, T, s tableaux on D, with corre-
sponding (semi-) idempotents e,,- -, e,. Let u € Par(n), T, (one) tableau with
er, = e,. Construct the s tableaux T, +(T, + m) and let ¢ be their correspon-
ding (semi-) idempotents, j =1,---,s. Then for some d >0 (integer), é(y)=
d-e(y)ely)j=L-s

Note. In §3 of [4], instead of writing S, ,(gr, (x)) = gr, (y), the notation is
changed to S 2,)(gr, (x)) = pr, (y)- Thus, for some d >0, p;(y)=d - p,(y) - pu (¥),
j=1,--s

§2. Identifications S2,, versus linearization

The substitution S&,,, [4, §3], identifies the x’s in the i-th row of T, to y..
Linearization turns out to be an inverse operation to S 2,), as we now show.

The symmetric group S, acts from the right on (any) monomial of degree n by
permuting places: n € S,

(yix e yi..)n = Yy " Yintay

This action extends linearly to homogeneous polynomials of degree n. Denote
by L the linearization operator. It is determined up to a choice of “‘names” for
the new variables. We choose them so as to end in FS,. L has the following

property.
L2.1. If g(yi, -, y.) is an identity of some algebra A, then L(q) is an
identity of A.

L is defined on monomials, then extended by linearity to polynomials. Let
M(yi," -+, y») be any monomial of degree n and let a; = deg, (M), then there
exists 17 € S, such that
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My, )=y

Obviously the linearization satisfies
L22. L(M)=L(yh--yir-m)= (LoD yi)

In the special case that M(y)=y" it is well-known that L(y")=
Soes, Xoty' " Xomy (=2ses,0). In  the general case, L(y?---yw=
Li(yi)- - Ln(y#), where the x-variables used by L, and L, are disjoint when
u # v. Choose

Xy, "ty Xa, fOr L](y‘]l‘)’
Xap1s' " s Xaras  fOT Lo(y32), etc,,
i.e.
L]()’T‘):( 2 O') xl'.'xa,,
cE€S, @)
Li(y®) = ( D ,,) Ko Xaras | €tC.
Uesaz(ﬂ|+|,~'<,a|+a2)
Thus, if

R(a) = R(a,,“~.a,,) = Sa,(lv T al)x Saz(al + 19 tt a, + a.’)x et

(a Young subgroup)
and R, = Z,er,,0, then

L23. L(y4 - y#=Ruw(=Rw % x)and L(y#---yi-n)=Run.

Note. Even though 7 is not unique, L is independent of its choice:
y‘;l . yz;.. n = y‘l’l . y‘;.h- 7O n'r*‘ (= R(a) & R(aln = R(a)'T o R(G)n = R(a)’r.

Linearity, L.2.2 and L.2.3 imply:

L24. Let q(y. -, yx) be homogeneous in each y, and let g € FS,, then

L(q(y)-g)=(L(g(y))g In particular, let deg,, (q9)= a:, so there is a § E FS,
such that

qy)=yit- -y g
so L(g(y)=(L(y? y)g =R &
Now turn to substitutions: Let Su,(x)=y,, 1=j=n, 1=j=h, so
Sep(Xi X )=y, -y, =yl yw-n Thus S, determines ai,-" -, an
(hence R, C S.) and the coset R)n. (Clearly, S, <> ((a), Ryn) classifies all

substitutions.) It is easy to check that Su,)(Xey ** Xom) = ¥ """ ¥i, * 0, SO, by
linearity we have



Vol. 42, 1982 GROWTH FOR MULTIPLICITIES IN COCHARACTERS 69

S$.2.5. Let gE€ FS, =V, then

Seol8) = (Sup(X1 - xa))- g=yi -y - g

This clearly implies Si.,,(8:8>) = (S.,)(&1))g> &1, 8: € FS,.
The substitutions S.,,= S(,, are defined in [4, §3]. Since

a; = deg,, (S@,)(x: - - x»)) = length of the i-th row of T,,
hence a, 2 - -+ = a,. The converse is

LEMMA 2.6. LetSuyy(x1 - x.)=yi' -y nandassumea, = - = a,. Let
A ={(ai," -, an), 50 A € Par(n), and define the tableau T, , = T, on A as follows:

T0= 1 2 . ...M

a1+1a1+2"' al+a2

ar
then S(x,y) = S&_y) a,

Proor. By definition,

n-'\T, . ..
) O Xty Tt X iap ™ Y

Xy Nay+1)s """y X @y ra T Y2

etc.

Since Suy(xi - X)) =y yiem, hence yii-oryi=Se,(xx)n'=
Sun(Xa-1y ** X 1) = (Seeyy (K1) * * ** * (Stey)(Xn-1en)). Compare places in the
two monomials to verify that S, = §{.,,. Q.E.D.

NOTE. A € Par(n) determines T, = T,,o. Given a second tableau T, (on A),
there exists (unique) n € S, such that 7T, = T,.

LEMMA 2.7. L(Sh,(x:* " X,)) = nRx, where 0T, = T.,.

Prook. Ty, =7"'Ty, so by 2.6, S&,(xi---x.)=y0---yw-n hence
L(S@p(xi - x))=L(yt-yin = ﬁmm = RTO' n. Now To=nT,, so Rq,=
nRrm ', and Ry,m = 1Ry, hence Ry,m = nRy,. Q.E.D.

The tableau T, defines the subgroups Rr,, Cr, C S.. Denote Z,cr, 0 = Ry,
Seecy (—1)0 = Cr, s0 er, = Ry, - Cr,. By [4, §1,3], Cr, = gr, and S{,)(8r,) =
Py u)-
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THEOREM 2.8. Let 0T, = Ty (as above) and write S{,(gr, (X1, X)) =
P()’n o Yh), then L(p(y,, KN }’h)) = ner,.

PRrOOF.

L(p(y)) = L(Scy(8n)) == (L(S&(x:" - x.)))gr,

[2.4.2.5]

:-_;— N " g, = neTA'

ReMark 2.9. F(y,---,y») D W, = the homogeneous polynomials of degree
n, as FS, right module. Given a,+---+a, = n, let W,,= W, ..., be the FS,
submodule of the polynomials gq(y) homogeneous in each y;, and deg,q = a;,
then W,=EPw, Wu. By L24 and S25 L:We—V,=FS, and
Sen:Va—= Wy, (8w, {(a), Ruyn)) are module homomorphisms. Some com-
positions L S, are calculated by 2.8. One can easily calculate S, ,,° L.

§3. A characterization of m,

The following part strengthens [4, theorem 3.5] to a characterization of
the m,’s in a cocharacter. Let A be a P.I. algebra, Q =I1(A)C F(x) its
identities and y, (A ) = Z,crars) MaXa its n-th cocharacter. To a tableau T, (on A)
corresponds er, =er (x,"-,x.), and by [4, 13], Si,(er(x))=
[Rr, | pr. (¥, - ) (B =h(A)).

THEOREM 3.1. With the above notations, m, equals the maximal number of
(standard) tableaux T, ---,T. (on A) with T, e =e(x), Si,(e(x))=
R+ | p:(y), such that p,(y),--+,p.(y) are linearly independent modulo Q (in
F(x).

Proor. (a) (The proof of this part is almost identical to that of {4, theorem
3.5].) Assume T,,---,T, are tableaux such that their corresponding
pi(y), -+, ps(y) are linearly independent modulo Q. If we show that

N FS,e, d(
@ e an

SFS,..->ﬂ =0,
G rajno

i FS,.e,- =
=

then m, = s. Both follow once we prove: If 2, bie; € Q, b, € FS,, then be; =0,
i=1,---,5 So,let X;_, be; € Q and assume b.e, # 0. There exists ¢ € FS, such
that ch,e; = e,. Write ¢; =cb;, i =2,---, 5, then e;+ c,e,+- -+ ce, € Q. Apply
S&,, and [4, 3 4] to obtain | Ry, | pi(y)+ a:pAy)+ - - + aps (y) € Q, contradict-
ing the assumed linear independence modulo Q. [Note: No assumption is made
of T: being standard.]
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(b) Write m, = s. Let I, C FS, be the two-sided ideal corresponding to A, and
write Q, = I, N Q. By the theory of S.-representations and by {3, ch. IV,
theorem 1] there are s (standard) tableaux T, - - -, T, (on A) with corresponding
e, -, e, such that

*) L=0& (@ F.e) .

Write Si2,,(e.)=|R+ |- pi(y), 1 =i=s, and assume Zi., a;pi(y) € Q. Note that
all p,(y) belong to the same W,,. Apply L! By L.2.1 and Theorem 2.8,
i am@e € Q for some - P ES,, s0 by (*), ay=-"-=a, =0.
Q.E.D.
The last theorem has the following application for F.:
LEMMA 3.2. Let A €EPar(n), A'EPar(n’), n=n', A =(wy,- -, w)=EA'=
(wi, -, wiy (Definition 1.1) with w,+ 2= wi, then m, = m,.

PrROOF. Write m, =s, so there are s tableaux T,,---, T, (on A) with their
corresponding pi(y),*--,ps(y) linearly independent modulo Q. Let p =
(wh— ws, -, wi— w,). By the results of [4, §3] there exists a tableau T, (on u)
whose corresponding p,. (y) is an Fy-non-identity.

Let Tj=T;+ (T, +n), j=1,---,s. T; are tableaux on A +p =A’', with
corresponding p;(y). By Corollary 1.4 there exists d > 0 such that

piy)=dp(y) pu(y), j=1L-s
By the primeness property of Q =I(F:), [1], pi(y),---,pi(y) are linearly
independent modulo Q. Therefore by Theorem 3.1 (m, =) s = m,-. Q.E.D.
§4. A polynomial bound for the m,’s

Given (large) n, we give one upper bound to all the m,’s of x.(F), a bound
which is a polynomial in n. By a tensor product technique, the result is extended
to all rings of matrices.

NoTATION. Given n, let t =t(n)=16n"+10n and define
Par(t)D w(n) = (4n’+4n,4n’+3n,4n°+2n, 4n’ + n).

NoOTE. A <pu(n) for any A €Par(n), hence for x.(F.), m\ = m,u). The
asymptotic results of [5] are applied to give a lower bound for d..), then an
upper bound for m,.q,.

LeEmMA 4.1. There exist a constant ¢ and a large enough N such that for all
nZN, dywy>c(1/t)Y?-4" (1, u(n) as above).
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Proor. Leta =1 and 8 =1/8in [5, 1.1], then choose N large enough such
that F.1.1 (there) works if t(n)= N. N = n should also be large enough for the
following asymptotic arguments:

Write w(n)=(t/4+c, Vi, tid+ e, \/_t), $0

_5-2 n___5-2
2 16n*+10n 8

1
Ci and Ci - C,*+] :Z

Thus p(n) € Aut,1,3) and by F.1.1,

. » (1\"?
dymy="vs"D(c1, "+, ¢5)" e et rad, (?) -4,
Now refer to [5, note 2.1]: Py(1,1/8) is compact, hence D(ci," -+, Dj)e 2"
has 2 minimum M Z 0 on it. Thus for large enough n, d., >3y M - (1/1)"* - 4",
Choose ¢ = 3y.M to complete the proof. Q.E.D.

LemMA 4.2. Let N = N(1,1/8) as above. For some d >0, m,.,<dt* for all
t(n), n Z N.

Proor. For a large enough ¢,

1 9/2 4 /1 32
Myny* € (;) A <My dumy = € (F2) = (?) -4

[Lemma 4.1] [4, theorem 5.4]

hence M, < (4/c V@r)- 1*. Choose d = 4/c V7. Q.E.D.
It is well-known that | A, (n)| = (""27') < n""",[2]. By Lemma 3.2 we deduce

COROLLARY 4.3. If n is large enough, then for all A € Par(n), m, <d - t'=
d-(16n*+10ny =d’'n®, hence Z,crmm <|Adn)|-d-(16n°+10n)'<d-n’-
(16n*+10n)’: the sum of multiplicities is polynomially bounded.

REMARK 4.4. Write n=6l+r, 0=r=5, I=[n/6]=n/6, and let A =
BL2LI+r)=(w4, -+, wi), where w,=0, wi=w,=1[ and w,=1+r. By [4,
theorem 3.22], m, Z(w,+ )(wo— D(ws+ )= +r+ DI~ +1)=1=
(&y'n’, for large n. Thus some (many) m,’s of x. (F>) also have a lower bound of a
polynomial rate of growth. For k = 2, x, (Fz) = x. (Fi), hence the same is true for
any x» (Fe)-

We now generalize Corollary 4.3 to all matrix rings Fi.

THEOREM 4.5. Let xu (Fi) = Zrcam) Muxa. There exist an exponent e = e(k)
and a constant c such that E,ca,.ymy = c - n°. In particular, m, < c'n® for all
A € Ax(n) where ¢' >0 is another constant and e' = e a smaller exponent.
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Proor. It is enough to prove for large n.

(a) Assume k =2' and prove by induction on /, the case | = 1 being Corollary
4.3. Prove for [ +1:

Fyn=Fy QF, > xu (F) = Xo (F2) Q) X (F2).
(6, theorem 8]

Induction and Corollary 4.3 imply

e F)Qx(F)= X an%® 2 dn'x

uEA4,(n) mEAN)

=adn™ 3 % Qe

veEA (n) KERYR)

By [7, lemma 1] there are e, ¢, such that for all v EAu(n), u € Au(n),
Xv ®Xﬂ- éEAGA“I+1(n)Cz ‘ne-. XA hence

Xn (Fa+) = c162d'n " - n2 | Aw (n)| - | As(n)] - p 2 X

A4;ﬂ(n)
Thus
1 I+1_
mo= 2 m=ccd -ntone-n g’
AEA HR) AEA 1+1{n)
=c-n’,

where ¢ =¢,c.d’ and e = e, +6+e,+4' —1+47" —1+3,
(b) The general case follows easily: For k arbitrary, choose I such that k=2
Since F. = F», F, satisfies more identities than Fy, hence x. (Fi) = xa (F2).
Q.E.D.

REMARK 4.6. Since x. (F2) = x. (Fi), Remark 4.4 implies that some m,’s in
x» (F¢) have a lower bound which also has a polynomial rate of growth. Thus
s.m, = L, (F), the colength of F;, has lower and upper bounds of polynomial
rate of growth.

We think that the property of a polynomial rate of growth of L, (A) is shared
by many other algebras.
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