A POLYNOMIAL RATE OF GROWTH FOR THE MULTIPLICITIES IN COCHARACTERS OF MATRICES

BY AMITAI REGEV

ABSTRACT

The sum of the multiplicities m_{λ} , as well as each m_{λ} , in the cocharacter $\chi_n(F_k)$ of the $k \times k$ matrices, have an upper bound of a polynomial rate of growth. Some have a lower bound which is also of a polynomial rate of growth.

Introduction

Let F be a field of characteristic zero, F_k the $k \times k$ matrices over F and let $\chi_n(F_k) = \sum_{\lambda \in \Lambda_{k^2}(n)} m_\lambda \chi_\lambda$ be its *n*-th cocharacter [4]. The inequality $m_\lambda \ge (w_1 + 1)(w_2 - 1)(w_3 + 1)$ [4, theorem 3.22], proved for F_2 , yields a lower bound for m_λ which, as a function of *n*, has a polynomial rate of growth. Thus most m_λ 's, and therefore also $\Sigma_\lambda m_\lambda$, have a lower bound of a polynomial rate of growth.

The purpose of this paper is to produce, for any F_k , upper and lower bounds of similar nature for $\Sigma_{\lambda} m_{\lambda}$. Thus the main result here is Theorem 4.5, which does exactly this.

Section 2 studies and compares linearization with substitutions, as FS_n right module homomorphism. Sections 1, 3 generalize and strengthen [4, §1, 3]. In particular, Theorem 3.1 characterizes the m_{λ} 's in a cocharacter. These results, together with [6, theorem 8] and with the asymptotic results of [5] and [7], allow us to prove our main result.

§1. Adding tableaux

The "gluing together" of two tableaux [4, §1] is now generalized. Let $\lambda = (a_1, \dots, a_r) \in Par(m)$ and write

$$\lambda = (w_1 + \cdots + w_r, w_2 + \cdots + w_r, \cdots, w_r):$$

Received November 28, 1980

A. REGEV

the Young diagram D_{λ} is made of $j \times w_j$ rectangles. To emphasize the "block" structure of λ we introduce the notation

$$\lambda = (w_1 + \cdots + w_r, \cdots, w_r) \stackrel{\text{def}}{=} \langle w_r, \cdots, w_1 \rangle \qquad \left(m = \sum_{j=1}^r j w_j \right).$$

EXAMPLE. $Par(12) \ni \lambda = (5, 3, 3, 1) = \langle 1, 2, 0, 2 \rangle.$

Note: Some of the w_i 's, in particular w_r , can be zero. Also, $\langle w_r, \dots, w_1 \rangle = \langle 0, \dots, 0, w_r, \dots, w_1 \rangle$. Thus, given $\lambda \in Par(m)$, $\mu \in Par(n)$, we can write $\lambda = \langle w_r, \dots, w_1 \rangle$ and $\mu = \langle w'_r, \dots, w'_1 \rangle$. One can then add λ and μ .

DEFINITION 1.1. Let $\lambda = \langle w_r, \dots, w_l \rangle \in Par(m)$, $\mu = \langle w'_r, \dots, w'_l \rangle \in Par(n)$ and define $\lambda + \mu \in Par(m+n)$ by $\lambda + \mu = \langle w_r + w'_r, \dots, w_l + w'_l \rangle$. Let $m \leq l$, $\lambda \in Par(m)$, $\nu \in Par(l)$. We say that $\lambda \leq \nu$ if $\nu = \lambda + \mu$ for some $\mu \in Par(l-m)$. Equivalently,

$$\langle w_r, \cdots, w_i \rangle \leq \langle v_r, \cdots, v_i \rangle$$
 if $w_j \leq v_j, \quad j = 1, \cdots, r_i$

Two arbitrary tableaux T_{λ} , T_{μ} can be added to yield a tableau on $\lambda + \mu$. The relation between the three corresponding idempotents is then studied.

DEFINITION 1.2. Let $\lambda = \langle w_r, \dots, w_1 \rangle \in Par(m)$ and T_{λ} a corresponding tableau. The block of columns of height j in T_{λ} forms a $j \times w_j$ rectangle which we denote by B_j ($B_j = \emptyset$ if $w_j = 0$). Now write $T_{\lambda} \stackrel{\text{def}}{=} \langle B_r, B_{r-1}, \dots, B_1 \rangle$. Let $T_{\mu} = \langle B'_r, \dots, B'_1 \rangle$, $\mu \in Par(n)$ be a second tableau. The entries of $T_{\mu} + m = \langle B'_r + m, \dots, B'_1 + m \rangle$ are $\{m + 1, \dots, m + n\}$, hence disjoint from those of T_{λ} , i.e. from $\{1, \dots, m\}$. Thus

$$T_{\lambda} + (T_{\mu} + m) \stackrel{\text{def}}{=} \langle B_r | (B'_r + m), \cdots, B_1 | (B'_1 + m) \rangle$$

is a tableau on $\lambda + \mu$.

EXAMPLE.
$$T_{\lambda} = \begin{bmatrix} 4 & 2 & 3 \\ 5 & 1 \end{bmatrix}$$
, $B_1 = \begin{bmatrix} 2 & 3 \\ 3 & 3 \end{bmatrix}$, $B_2 = \emptyset$, $B_3 = \begin{bmatrix} 4 \\ 5 \\ 1 \end{bmatrix}$.
Let $T_{\mu} = \begin{bmatrix} 2 & 3 \\ 1 \end{bmatrix}$, then $T_{\mu} + 5 = \begin{bmatrix} 7 & 8 \\ 6 \end{bmatrix}$ and $T_{\lambda} + (T_{\mu} + 5) = \begin{bmatrix} 4 & 7 & 2 & 3 & 8 \\ 5 & 6 \\ 1 \end{bmatrix}$.

Let $\kappa(T_{\nu}) = {\kappa_1, \dots, \kappa_a}$ denote the set of columns of the tableau $T_{\nu}, \nu \in$ Par(k). Let $S(\kappa_i) \subseteq S_k$ denote the permutations of its entries, so $C_{T_{\nu}} = X_{i=1}^a S(\kappa_i)$. Clearly, $\kappa(T_{\lambda} + (T_{\mu} + m)) = A_1 \cup A_2$ (disjoint union) with $A_1 =$ $\kappa(T_{\lambda})$ (entries: $1, \dots, m$) and $A_2 = \kappa(T_{\mu} + m)$ (entries: $m + 1, \dots, n$). Thus $C_{T_{\lambda}+(T_{\mu}+m)} = C_{T_{\lambda}} \times C_{(T_{\mu}+m)}$. As in [4, 1.4], this implies that

$$g_{T_{\lambda}+(T_{\mu}+m)}(x_{1},\cdots,x_{m+n}) = g_{T_{\lambda}}(x_{1},\cdots,x_{m}) \cdot g_{T_{\mu}}(x_{m+1},\cdots,x_{m+n}).$$

With the proofs of [4, 1.5, 1.6] unchanged, we now have the following, more general

THEOREM 1.3. Let $\lambda \in Par(m)$, $\mu \in Par(n)$, then

$$e_{T_{\lambda}^{+}(T_{\mu}+m)}(y) = d \cdot e_{T_{\lambda}}(y) \cdot e_{T_{\mu}}(y)$$

for some (integer) $d \ge 1$.

COROLLARY 1.4. Let $\lambda \in Par(m)$, T_1, \dots, T_s s tableaux on D_{λ} with corresponding (semi-) idempotents e_1, \dots, e_s . Let $\mu \in Par(n)$, T_{μ} (one) tableau with $e_{T_{\mu}} = e_{\mu}$. Construct the s tableaux $T_j + (T_{\mu} + m)$ and let \hat{e}_j be their corresponding (semi-) idempotents, $j = 1, \dots, s$. Then for some d > 0 (integer), $\hat{e}_j(y) = d \cdot e_j(y) \cdot e_{\mu}(y)$, $j = 1, \dots, s$.

NOTE. In §3 of [4], instead of writing $S_{(x,y)}^{T_{\lambda}}(g_{T_{\lambda}}(x)) = g_{T_{\lambda}}(y)$, the notation is changed to $S_{(x,y)}^{T_{\lambda}}(g_{T_{\lambda}}(x)) = p_{T_{\lambda}}(y)$. Thus, for some d > 0, $\hat{p}_{j}(y) = d \cdot p_{j}(y) \cdot p_{\mu}(y)$, $j = 1, \dots, s$.

§2. Identifications $S_{(x,y)}^{T_{\lambda}}$ versus linearization

The substitution $S_{(x,y)}^{T}$, [4, §3], identifies the x's in the *i*-th row of T_{λ} to y_i . Linearization turns out to be an inverse operation to $S_{(x,y)}^{T}$, as we now show.

The symmetric group S_n acts from the right on (any) monomial of degree *n* by permuting places: $\eta \in S_n$

$$(y_{i_1}\cdots y_{i_n})\eta = y_{i_{\eta(1)}}\cdots y_{i_{\eta(n)}}$$

This action extends linearly to homogeneous polynomials of degree n. Denote by L the linearization operator. It is determined up to a choice of "names" for the new variables. We choose them so as to end in FS_n . L has the following property.

L.2.1. If $q(y_1, \dots, y_n)$ is an identity of some algebra A, then L(q) is an identity of A.

L is defined on monomials, then extended by linearity to polynomials. Let $M(y_1, \dots, y_h)$ be any monomial of degree n and let $a_{i'} = \deg_{y_i}(M)$, then there exists $\eta \in S_n$ such that

$$M(y_1,\cdots,y_h)=(y_1^{a_1}\cdots y_h^{a_h})\eta.$$

Obviously the linearization satisfies

L.2.2.
$$L(M) = L(y_1^{a_1}\cdots y_h^{a_h}\cdot \eta) = (L(y_1^{a_1}\cdots y_h^{a_h}))\cdot \eta.$$

In the special case that $M(y) = y^n$, it is well-known that $L(y^n) = \sum_{\sigma \in S_n} x_{\sigma(1)} \cdots x_{\sigma(n)}$ $(\equiv \sum_{\sigma \in S_n} \sigma)$. In the general case, $L(y_1^{a_1} \cdots y_n^{a_n}) = L_1(y_1^{a_1}) \cdots L_h(y_n^{a_n})$, where the x-variables used by L_u and L_v are disjoint when $u \neq v$. Choose

$$x_1, \dots, x_{a_1}$$
 for $L_1(y_1^{a_1})$,
 $x_{a_1+1}, \dots, x_{a_1+a_2}$ for $L_2(y_2^{a_2})$, etc.

i.e.

$$L_{1}(y_{1}^{a_{1}}) = \left(\sum_{\sigma \in S_{a_{1}}(a, \dots, a_{1})} \sigma\right) x_{1} \cdots x_{a_{1}},$$
$$L_{2}(y_{2}^{a_{2}}) = \left(\sum_{\sigma \in S_{a_{2}}(a_{1}+1, \dots, a_{1}+a_{2})} \sigma\right) x_{a_{1}+1} \cdots x_{a_{1}+a_{2}}, \quad \text{etc.}$$

Thus, if

$$R_{(a)} = R_{(a_1,\dots,a_h)} = S_{a_1}(1,\dots,a_1) \times S_{a_2}(a_1+1,\dots,a_1+a_2) \times \cdots$$

(a Young subgroup)

and $\bar{R}_{(a)} = \sum_{\sigma \in R_{(a)}} \sigma$, then

L.2.3.
$$L(y_1^{a_1}\cdots y_h^{a_h})=\overline{R}_{(a)}(\equiv \overline{R}_{(a)}\cdot x_1\cdots x_h)$$
 and $L(y_1^{a_1}\cdots y_h^{a_h}\cdot \eta)=\overline{R}_{(a)}\cdot \eta$.

NOTE. Even though η is not unique, L is independent of its choice: $y_{1}^{a_{1}} \cdots y_{h}^{a_{h}} \cdot \eta = y_{1}^{a_{1}} \cdots y_{h}^{a_{h}} \cdot \tau \Leftrightarrow \eta \tau^{-1} \in R_{(a)} \Leftrightarrow R_{(a)} \eta = R_{(a)} \tau \Leftrightarrow \overline{R}_{(a)} \eta = \overline{R}_{(a)} \tau.$

Linearity, L.2.2 and L.2.3 imply:

L.2.4. Let $q(y_1, \dots, y_h)$ be homogeneous in each y_1 and let $g \in FS_n$, then $L(q(y) \cdot g) = (L(q(y)))g$. In particular, let $\deg_{y_i}(q) = a_i$, so there is a $g \in FS_n$ such that

$$q(y) = y_1^{a_1} \cdots y_h^{a_h} \cdot g,$$

so $L(q(y)) = (L(y_1^{a_1}\cdots y_h^{a_h}))g = \overline{R}_{(a)}\cdot g.$

Now turn to substitutions: Let $S_{(x,y)}(x_i) = y_{i_1}$, $1 \le j \le n$, $1 \le i_j \le h$, so $S_{(x,y)}(x_1 \cdots x_n) = y_{i_1} \cdots y_{i_n} = y_1^{a_1} \cdots y_n^{a_k} \cdot \eta$. Thus $S_{(x,y)}$ determines a_1, \cdots, a_h (hence $R_{(a)} \subseteq S_n$) and the coset $R_{(a)}\eta$. (Clearly, $S_{(x,y)} \leftrightarrow ((a), R_{(a)}\eta)$ classifies all substitutions.) It is easy to check that $S_{(x,y)}(x_{\sigma(1)} \cdots x_{\sigma(n)}) = y_{i_1} \cdots y_{i_n} \cdot \sigma$, so, by linearity we have

S.2.5. Let $g \in FS_n \equiv V_n$, then

$$S_{(x,y)}(g) = (S_{(x,y)}(x_1 \cdots x_n)) \cdot g = y_1^{a_1} \cdots y_n^{a_n} \eta \cdot g.$$

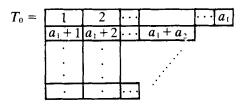
This clearly implies $S_{(x,y)}(g_1g_2) = (S_{(x,y)}(g_1))g_2, g_1, g_2 \in FS_n$.

The substitutions $S_{(x,y)} = S_{(x,y)}^{T}$ are defined in [4, §3]. Since

 $a_i = \deg_{y_i}(S_{(x,y)}^{T_{\lambda}}(x_1 \cdots x_n)) = \text{length of the } i\text{-th row of } T_{\lambda},$

hence $a_1 \ge \cdots \ge a_h$. The converse is

LEMMA 2.6. Let $S_{(x,y)}(x_1 \cdots x_n) = y_1^{a_1} \cdots y_h^{a_h} \cdot \eta$ and assume $a_1 \ge \cdots \ge a_h$. Let $\lambda = (a_1, \cdots, a_h)$, so $\lambda \in Par(n)$, and define the tableau $T_{\lambda,0} = T_0$ on λ as follows:



then $S_{(x,y)} = S_{(x,y)}^{\eta^{-1}T_0}$.

PROOF. By definition,

$$S_{(x,y)}^{\eta^{-1}T_{0}} \colon x_{\eta^{-1}(1)}, \cdots, x_{\eta^{-1}(a_{1})} \to y_{1}$$
$$x_{\eta^{-1}(a_{1}+1)}, \cdots, x_{\eta^{-1}(a_{1}+a_{2})} \to y_{2}$$
etc.

Since $S_{(x,y)}(x_1 \cdots x_n) = y_1^{a_1} \cdots y_n^{a_n} \eta$, hence $y_1^{a_1} \cdots y_n^{a_n} = S_{(x,y)}(x_1 \cdots x_n) \eta^{-1} = S_{(x,y)}(x_{\eta^{-1}(1)} \cdots x_{\eta^{-1}(n)}) = (S_{(x,y)}(x_{\eta^{-1}(1)})) \cdots (S_{(x,y)}(x_{\eta^{-1}(n)}))$. Compare places in the two monomials to verify that $S_{(x,y)} = S_{(x,y)}^{\eta^{-1}T_0}$. Q.E.D.

NOTE. $\lambda \in Par(n)$ determines $T_0 = T_{\lambda,0}$. Given a second tableau T_{λ} (on λ), there exists (unique) $\eta \in S_n$ such that $\eta T_{\lambda} = T_0$.

LEMMA 2.7. $L(S_{(x,y)}^{T}(x_1\cdots x_n)) = \eta \overline{R}_{T_{\lambda}}$, where $\eta T_{\lambda} = T_0$.

PROOF. $T_{\lambda} = \eta^{-1}T_0$, so by 2.6, $S_{(\vec{x},y)}^T(x_1 \cdots x_n) = y_1^{a_1} \cdots y_n^{a_k} \eta$, hence $L(S_{(\vec{x},y)}^T(x_1 \cdots x_n)) = L(y_1^{a_1} \cdots y_n^{a_k})\eta = \bar{R}_{(a)}\eta = \bar{R}_{T_0} \cdot \eta$. Now $T_0 = \eta T_{\lambda}$, so $R_{T_0} = \eta R_{T_{\lambda}}\eta^{-1}$, and $R_{T_0}\eta = \eta R_{T_{\lambda}}$, hence $\bar{R}_{T_0}\eta = \eta \bar{R}_{T_{\lambda}}$. Q.E.D.

The tableau T_{λ} defines the subgroups $R_{T_{\lambda}}, C_{T_{\lambda}} \subseteq S_n$. Denote $\sum_{\sigma \in R_{T_{\lambda}}} \sigma = \bar{R}_T$, $\sum_{\sigma \in C_{T_{\lambda}}} (-1)^{\sigma} \sigma = \bar{C}_{T_{\lambda}}$, so $e_{T_{\lambda}} = \bar{R}_{T_{\lambda}} \cdot \bar{C}_{T_{\lambda}}$. By [4, §1,3], $\bar{C}_{T_{\lambda}} = g_{T_{\lambda}}$ and $S_{(x,y)}^{T}(g_{T_{\lambda}}) = p(y_1, \dots, y_h)$. A. REGEV

THEOREM 2.8. Let $\eta T_{\lambda} = T_0$ (as above) and write $S_{(x,y)}^{T_{\lambda}}(g_{T_{\lambda}}(x_1, \dots, x_n)) = p(y_1, \dots, y_h)$, then $L(p(y_1, \dots, y_h)) = \eta e_{T_{\lambda}}$.

PROOF.

$$L(p(\mathbf{y})) = L(S_{(x,y)}^{\mathsf{T}}(g_{\mathcal{T}_{\lambda}})) \underbrace{=}_{[2.4,2.5]} (L(S_{(x,y)}^{\mathsf{T}}(x_{1}\cdots x_{n})))g_{\mathcal{T}_{\lambda}}$$
$$= \underbrace{=}_{[2.7]} \eta \bar{R}_{\mathcal{T}_{\lambda}} \cdot g_{\mathcal{T}_{\lambda}} = \eta e_{\mathcal{T}_{\lambda}}.$$

REMARK 2.9. $F\langle y_1, \dots, y_h \rangle \supset W_n$ = the homogeneous polynomials of degree n, as FS_n right module. Given $a_1 + \dots + a_h = n$, let $W_{(a)} = W_{(a_1,\dots,a_h)}$ be the FS_n submodule of the polynomials q(y) homogeneous in each y_i , and $\deg_{y_i}q = a_i$, then $W_n = \bigoplus_{(a)} W_{(a)}$. By L.2.4 and S.2.5, $L : W_{(a)} \rightarrow V_n \equiv FS_n$ and $S_{(x,y)}: V_n \rightarrow W_{(a)}$ ($S_{(x,y)} \leftrightarrow ((a), R_{(a)}\eta)$) are module homomorphisms. Some compositions $L \circ S_{(x,y)}$ are calculated by 2.8. One can easily calculate $S_{(x,y)} \circ L$.

§3. A characterization of m_{λ}

The following part strengthens [4, theorem 3.5] to a characterization of the m_{λ} 's in a cocharacter. Let A be a P.I. algebra, $Q = I(A) \subset F\langle x \rangle$ its identities and $\chi_n(A) = \sum_{\lambda \in Par(n)} m_{\lambda} \chi_{\lambda}$ its *n*-th cocharacter. To a tableau T_{λ} (on λ) corresponds $e_{T_{\lambda}} = e_{T_{\lambda}}(x_1, \dots, x_n)$, and by [4, 1.3], $S_{(x,y)}^{T_{\lambda}}(e_{T_{\lambda}}(x)) =$ $|R_{T_{\lambda}}| \cdot p_{T_{\lambda}}(y_1, \dots, y_n)$ ($h = h(\lambda)$).

THEOREM 3.1. With the above notations, m_{λ} equals the maximal number of (standard) tableaux T_1, \dots, T_s (on λ) with $T_i \leftrightarrow e_i = e_i(x)$, $S_{(\lambda,y)}^{T}(e_i(x)) = |R_{T_i}| \cdot p_i(y)$, such that $p_1(y), \dots, p_s(y)$ are linearly independent modulo Q (in F(x)).

PROOF. (a) (The proof of this part is almost identical to that of [4, theorem 3.5].) Assume T_1, \dots, T_s are tableaux such that their corresponding $p_1(y), \dots, p_s(y)$ are linearly independent modulo Q. If we show that

$$\sum_{i=1}^{s} FS_{n}e_{i} = \bigoplus_{i=1}^{s} FS_{n}e_{i} \text{ and } \left(\bigoplus_{i=1}^{s} FS_{n}e_{i}\right) \cap Q = 0,$$

then $m_{\lambda} \geq s$. Both follow once we prove: If $\sum_{i=1}^{s} b_i e_i \in Q$, $b_1 \in FS_n$, then $b_i e_i = 0$, $i = 1, \dots, s$. So, let $\sum_{i=1}^{s} b_i e_i \in Q$ and assume $b_1 e_1 \neq 0$. There exists $c \in FS_n$ such that $cb_1 e_1 = e_1$. Write $c_i = cb_i$, $i = 2, \dots, s$, then $e_1 + c_2 e_2 + \dots + c_s e_s \in Q$. Apply $S_{(x,y)}^{T}$ and [4, 3 4] to obtain $|R_{T_1}| \cdot p_1(y) + \alpha_2 p_2(y) + \dots + \alpha_s p_s(y) \in Q$, contradicting the assumed linear independence modulo Q. [Note: No assumption is made of T_i being standard.] (b) Write $m_{\lambda} = s$. Let $I_{\lambda} \subseteq FS_n$ be the two-sided ideal corresponding to λ , and write $Q_{\lambda} = I_{\lambda} \cap Q$. By the theory of S_n -representations and by [3, ch. IV, theorem 1] there are s (standard) tableaux T_1, \dots, T_s (on λ) with corresponding e_1, \dots, e_s such that

(*)
$$I_{\lambda} = Q_{\lambda} \oplus \left(\bigoplus_{i=1}^{s} FS_{n}e_{i} \right) .$$

Write $S_{(x,y)}^{T_s}(e_i) = |R_{T_i}| \cdot p_i(y), 1 \le i \le s$, and assume $\sum_{i=1}^{s} \alpha_i p_i(y) \in Q$. Note that all $p_i(y)$ belong to the same $W_{(a)}$. Apply L! By L.2.1 and Theorem 2.8, $\sum_{i=1}^{s} \alpha_i \eta^{(i)} e_i \in Q$ for some $\eta^{(1)}, \dots, \eta^{(s)} \in S_n$, so by (*), $\alpha_1 = \dots = \alpha_s = 0$.

The last theorem has the following application for F_2 :

LEMMA 3.2. Let $\lambda \in Par(n)$, $\lambda' \in Par(n')$, $n \leq n'$, $\lambda = \langle w_4, \dots, w_1 \rangle \leq \lambda' = \langle w'_4, \dots, w'_1 \rangle$ (Definition 1.1) with $w_4 + 2 \leq w'_4$, then $m_\lambda \leq m_{\lambda'}$.

PROOF. Write $m_{\lambda} = s$, so there are s tableaux T_1, \dots, T_s (on λ) with their corresponding $p_1(y), \dots, p_s(y)$ linearly independent modulo Q. Let $\mu = \langle w'_4 - w_4, \dots, w'_1 - w_1 \rangle$. By the results of [4, §3] there exists a tableau T_{μ} (on μ) whose corresponding $p_{\mu}(y)$ is an F_2 -non-identity.

Let $T'_{j} = T_{j} + (T_{\mu} + n)$, $j = 1, \dots, s$. T'_{j} are tableaux on $\lambda + \mu = \lambda'$, with corresponding $p'_{i}(y)$. By Corollary 1.4 there exists d > 0 such that

$$p'_{j}(\mathbf{y}) = dp_{j}(\mathbf{y}) \cdot p_{\mu}(\mathbf{y}), \qquad j = 1, \cdots, s.$$

By the primeness property of $Q = I(F_2)$, [1], $p'_1(y), \dots, p'_s(y)$ are linearly independent modulo Q. Therefore by Theorem 3.1 $(m_{\lambda} =) s \leq m_{\lambda'}$. Q.E.D.

§4. A polynomial bound for the m_{λ} 's

Given (large) *n*, we give one upper bound to all the m_{λ} 's of $\chi_n(F_2)$, a bound which is a polynomial in *n*. By a tensor product technique, the result is extended to all rings of matrices.

NOTATION. Given n, let $t = t(n) = 16n^2 + 10n$ and define

$$Par(t) \ni \mu(n) = (4n^2 + 4n, 4n^2 + 3n, 4n^2 + 2n, 4n^2 + n).$$

NOTE. $\lambda < \mu(n)$ for any $\lambda \in Par(n)$, hence for $\chi_n(F_2)$, $m_\lambda \leq m_{\mu(n)}$. The asymptotic results of [5] are applied to give a lower bound for $d_{\mu(n)}$, then an upper bound for $m_{\mu(n)}$.

LEMMA 4.1. There exist a constant c and a large enough N such that for all $n \ge N$, $d_{\mu(n)} > c \cdot (1/t)^{9/2} \cdot 4'$ (t, $\mu(n)$ as above).

O.E.D.

A. REGEV

PROOF. Let a = 1 and $\delta = 1/8$ in [5, 1.1], then choose N large enough such that F.1.1 (there) works if $t(n) \ge N$. $N \le n$ should also be large enough for the following asymptotic arguments:

Write $\mu(n) = (t/4 + c_1 \sqrt{t}, \dots, t/4 + c_4 \sqrt{t})$, so

$$c_j = \frac{5-2j}{2} \cdot \frac{n}{\sqrt{16n^2+10n}} \simeq \frac{5-2j}{8}$$
 and $c_j - c_{j+1} \simeq \frac{1}{4}$.

Thus $\mu(n) \in \Lambda_4(t, 1, \frac{1}{8})$ and by F.1.1,

$$d_{\mu(n)} \simeq \gamma_4 \cdot D(c_1, \cdots, c_4) \cdot e^{-2(c_1^2 + \cdots + c_4^2)} \cdot \left(\frac{1}{t}\right)^{9/2} \cdot 4^{-2}$$

Now refer to [5, note 2.1]: $P_4(1, 1/8)$ is compact, hence $D(c_1, \dots, D_4)e^{-2(c_1^2 + \dots + c_4^2)}$ has a minimum $M \ge 0$ on it. Thus for large enough n, $d_{\mu(n)} > \frac{1}{2}\gamma_4 \cdot M \cdot (1/t)^{9/2} \cdot 4^t$. Choose $c = \frac{1}{2}\gamma_4 M$ to complete the proof. Q.E.D.

LEMMA 4.2. Let N = N(1, 1/8) as above. For some d > 0, $m_{\mu(n)} < dt^3$ for all t(n), $n \ge N$.

PROOF. For a large enough t,

$$m_{\mu(n)} \cdot c \cdot \left(\frac{1}{t}\right)^{9/2} \cdot 4^t < m_{\mu(n)} \cdot d_{\mu(n)} \leq c_t (F_2) \leq \frac{4}{\pi} \left(\frac{1}{t}\right)^{3/2} \cdot 4^t,$$

[Lemma 4.1] [4, theorem 5.4]

hence $m_{\mu(n)} < (4/c\sqrt{\pi}) \cdot t^3$. Choose $d = 4/c\sqrt{\pi}$. Q.E.D. It is well-known that $|\Lambda_h(n)| \le {n+h-1 \choose n} < n^{h-1}$, [2]. By Lemma 3.2 we deduce

COROLLARY 4.3. If n is large enough, then for all $\lambda \in Par(n)$, $m_{\lambda} < d \cdot t^{3} = d \cdot (16n^{2} + 10n)^{3} \leq d'n^{6}$, hence $\sum_{\lambda \in \Lambda_{4}(n)} m_{\lambda} < |\Lambda_{4}(n)| \cdot d \cdot (16n^{2} + 10n)^{3} < d \cdot n^{3} \cdot (16n^{2} + 10n)^{3}$: the sum of multiplicities is polynomially bounded.

REMARK 4.4. Write n = 6l + r, $0 \le r \le 5$, l = [n/6] = n/6, and let $\lambda = (3l, 2l, l + r) = \langle w_4, \dots, w_1 \rangle$, where $w_4 = 0$, $w_3 = w_2 = l$ and $w_1 = l + r$. By [4, theorem 3.22], $m_{\lambda} \ge (w_1 + 1)(w_2 - 1)(w_3 + 1) = (l + r + 1)(l - 1)(l + 1) = l^3 = (\frac{1}{6})^3 n^3$, for large *n*. Thus some (many) m_{λ} 's of χ_n (F_2) also have a lower bound of a polynomial rate of growth. For $k \ge 2$, χ_n (F_2) $\le \chi_n$ (F_k), hence the same is true for any χ_n (F_k).

We now generalize Corollary 4.3 to all matrix rings F_k .

THEOREM 4.5. Let $\chi_n(F_k) = \sum_{\lambda \in \Lambda_k^{(1)}} m_\lambda \chi_\lambda$. There exist an exponent e = e(k)and a constant c such that $\sum_{\lambda \in \Lambda_k^{(1)}} m_\lambda \leq c \cdot n^e$. In particular, $m_\lambda \leq c' n^{e'}$ for all $\lambda \in \Lambda_k^{(2)}(n)$ where c' > 0 is another constant and $e' \leq e$ a smaller exponent. **PROOF.** It is enough to prove for large *n*.

(a) Assume $k = 2^{l}$ and prove by induction on *l*, the case l = 1 being Corollary 4.3. Prove for l + 1:

$$F_{2^{l+1}} \cong F_{2^{l}} \bigotimes F_{2} \Rightarrow \chi_{n} (F_{2^{l+1}}) \le \chi_{n} (F_{2^{l}}) \bigotimes \chi_{n} (F_{2}).$$

[6, theorem 8]

Induction and Corollary 4.3 imply

$$\chi_n(F_{2^l}) \otimes \chi_n(F_2) \leq \sum_{\nu \in \Lambda_{4^l}(n)} c_1 n^{\epsilon_1} \chi_\nu \otimes \sum_{\mu \in \Lambda_{4^l}(n)} d' n^6 \chi_\mu$$
$$= c_1 d' n^{\epsilon_1 + 6} \cdot \sum_{\nu \in \Lambda_{4^l}(n)} \sum_{\mu \in \Lambda_{4^l}(n)} \chi_\nu \otimes \chi_\mu$$

By [7, lemma 1] there are e_2 , c_2 such that for all $\nu \in \Lambda_{4^i}(n)$, $\mu \in \Lambda_{4}(n)$, $\chi_{\nu} \otimes \chi_{\mu} \leq \sum_{\lambda \in \Lambda_{4^{i+1}(n)}} c_2 \cdot n^{\epsilon_2} \cdot \chi_{\lambda}$, hence

$$\chi_n(F_{2^{i+1}}) \leq c_1 c_2 d' n^{\epsilon_1+6} \cdot n^{\epsilon_2} \cdot |\Lambda_{4^i}(n)| \cdot |\Lambda_4(n)| \cdot \sum_{\lambda \in \Lambda_{4^{i+1}}(n)} \chi_{\lambda}$$

Thus

$$\sum_{\lambda \in \Lambda_k: (n)} m_{\lambda} = \sum_{\lambda \in \Lambda_{4^{l+1}(n)}} m_{\lambda} \leq c_1 c_2 d' \cdot n^{e_1 + 6} \cdot n^{e_2} \cdot n^{4^{l-1}} \cdot n^3 \cdot n^{4^{l+1-1}}$$
$$= c \cdot n^e,$$

where $c = c_1 c_2 d'$ and $e = e_1 + 6 + e_2 + 4^l - 1 + 4^{l+1} - 1 + 3$.

(b) The general case follows easily: For k arbitrary, choose l such that $k \leq 2^{l}$. Since $F_k \leq F_{2^{l}}$, F_k satisfies more identities than $F_{2^{l}}$, hence $\chi_n(F_k) \leq \chi_n(F_{2^{l}})$. Q.E.D.

REMARK 4.6. Since $\chi_n(F_2) \leq \chi_n(F_k)$, Remark 4.4 implies that some m_{λ} 's in $\chi_n(F_k)$ have a lower bound which also has a polynomial rate of growth. Thus $\Sigma_{\lambda} m_{\lambda} = L_n(F_k)$, the colength of F_k , has lower and upper bounds of polynomial rate of growth.

We think that the property of a polynomial rate of growth of $L_n(A)$ is shared by many other algebras.

REFERENCES

- 1. S. Amitsur, The T-ideal of the free ring, J. London Math. Soc. 30 (1955), 470-475.
- 2. M. Hall, Combinatorial Theory, Blaisdell, Waltham, Mass., 1967.
- 3. N. Jacobson, Structure of Rings, Am. Math. Soc. Colloq. Publ., Vol. 37, 1964.

4. A. Regev, The polynomial identities of matrices in characteristic zero, Commun. Algebra 8 (1980), 1417-1467.

5. A. Regev, Asymptotic values for degrees associated with strips of Young diagrams, Adv. Math. 41 (1981), 115-136.

6. A. Regev, The Kronecker product of S_n -characters and an $A \otimes B$ theorem for Capelli identities, J. Algebra 66 (1980), 505-510.

7. A. Regev, On the height of the Kronecker product of S_n characters, Isr. J. Math. 42 (1982), 60-64.

DEPARTMENT OF THEORETICAL MATHEMATICS

The Weizmann Institute of Science Rehovot, Israel