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A POLYNOMIAL RATE OF GROWTH 
FOR THE MULTIPLICITIES 

IN COCHARACTERS OF MATRICES 

BY 

A M I T A I  R E G E V  

A B S T R A C T  

The sum of the multiplicities m~, as well as each m, ,  in the cocharacter X, (Fk) of 
the k x k matrices, have an upper bound of a polynomial rate of growth. Some 
have a lower bound which is also of a polynomial rate of growth. 

Introduction 

Let F be a field of characteristic zero, F~ the k x k matrices over F and let 

x , (Fk)=E~:~,)m~x,  be its n-th cocharacter [4]. The inequality m~_- > 

(w. + 1)(w2-  1)(w~ + I) [4, theorem 3.22], proved for F2, yields a lower bound 

for m~ which, as a function of n, has a polynomial rate of growth. Thus most 

m, 's,  and therefore also Y~ m,, have a lower bound of a polynomial rate of 

growth. 

The purpose of this paper is to produce, for any Fk, upper and lower bounds of 

similar nature for E~ m~. Thus the main result here is Theorem 4.5, which does 

exactly this. 

Section 2 studies and compares linearization with substitutions, as FS, right 

module homomorphism. Sections 1, 3 generalize and strengthen [4, §1, 3]. In 

particular, Theorem 3.1 characterizes the m~'s in a cocharacter. These results, 

together with [6, theorem 8] and with the asymptotic results of [5] and [7], allow 

us to prove our main result. 

§1. Adding tableaux 

The "gluing together"  of two tableaux [4, §1] is now generalized. 

Let A = ( a , , . . . , a , ) E  Par(m) and write 

A = ( w ~ + . . . + w , , w , . + . . . + w , , . . . , w , ) :  
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the Young diagram D, is made of j × wj rectangles. To emphasize the "block" 

structure of A we introduce the notation 

a = ( w , + . . . + w , , . . . , w , ) ~ ° ' ( w , , =  • • . ,  w , )  

EXAMPLE. Par(12)D A = (5,3,3, 1)= (1,2,0,2). 

Note: Some of the w,'s, in particular w,, can be zero. Also, (w , , . . . ,  w0 = 

(0 , . . . , 0 ,  w , , . . . ,  w~). Thus, given A @Par(m), /x E Par(n), we can write A = 

(w,, . . - ,w~) and /x = ( w ' , , . . . ,  w~). One can then add A and /x. 

DEFINITION 1.1. Let A = (w, , - ' . ,  w~) E Par(m), tz = (w ' , , . . . ,  w'~) E Par(n) 

and define a +/z EPar (m + n) by A +/x = (w, + w ' , , . . . ,  w, + w~). Let m -< l, 

AEPar (m) ,  vEPar ( / ) .  We say that A_-<v if v = A + / x  for some 

/, E P a r ( / -  m). Equivalently, 

(wr, . . . ,wO<(v,, . . . ,vO ifwj<-_vj, j = 1 , . . . , r .  

Two arbitrary tableaux T,, T, can be added to yield a tableau on a +/x. The 

relation between the three corresponding idempotents is then studied. 

DEFINITION 1.2. Let A = (w,,. • ", w,) G Par(m) and TA a corresponding tab- 

leau. The block of columns of height j in TA forms a j × wj rectangle which we 

denote by Bj (B s = O  if wj = 0). Now write TA at2 (B,,Br_,, . .  ",B~). Let T, = 

(B', , .- . ,B'~), /x@Par(n)  be a second tableau. The entries of T , + m =  
(B',+ m , - . . ,  B'~ + m) are {m + I, .  • -, m + n}, hence disjoint from those of TA, i.e. 

from {1, . . - ,m}.  Thus 

T, +(T,. +m)~=f (B, {(B',+ m ) , . . . , B , { ( B ' , + m ) )  

is a tableau on A +/.,. 

EXAMPLE. Ta 

Let T~ = 

XV- 

= 5 ~ 2 1  3 ] ,  B~= [ ' ~ - ~ ,  B2---~, B3 = ~ .  

, t h e n T ~ + 5 = [ ~  and T~+(T~+5)=[41712]318]. 

Let K(T~)={m, ' ' ' ,K~}  denote the set of columns of the tableau T., v E 

Par(k). Let S(Ki)C_Sk denote the permutations of its entries, so Cro = 
XT=tS(K,). Clearly, K(T~+(Tu+m))=A, UA2 (disjoint un ion )wi th  A , =  
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K(T,) (entries: 1 , . . . , m )  and A 2 = K ( T , + m )  (entries: m + l , . . ' , n ) .  Thus 

Cr~+~r,+m~ = CT~ × C~T+,,~. As in [4, 1.4], this implies that 

gTx+(Tu +rn)(X I , ' "  ", Xm+n ) = gT~, ( X l ,  " " " ,  Xm )" gT. ( X m + l ,  " " " ,  Xm+n ). 

With the proofs of [4, 1.5, 1.6] unchanged, we now have the following, more 

general 

THEOREM 1.3. Let  A @ Par(m), /z ~ Par(n), then 

eT~+~T,+m~(y) = d " eT, (y ) " er, (y ) 

for some (integer) d > 1. 

COROLLARY 1.4. Let  A E Par(m), T x , "  ", T, s tableaux on D~ with corre- 

sponding (semi-)  idempotents e ~ , . . . , e , .  Let  tx E Par(n), T, (one)  tableau with 

er~ = e, .  Construct the s tableaux T~ + ( T,  + m )  and let ~ be their correspon- 

ding (semi-)  idempotents, j = 1 , . . . , s .  Then for some d > 0  (integer), ~j(y)=  

d .  e~(y)- e , (y) ,  ] = 1,- .-,s. 

NOTE. In §3 of [4], instead of writing S~y~(g~,(x))= gr,(y),  the notation is 

changed to S[~y~(gT, (X)) = pT, (y). Thus, for some d > 0,/~j (y) = d • Pi (Y)" P,, (Y), 

j = l , . . . , s .  

§2. Identifications S~y~ versus linearization 

The substitution S~y~, [4, §3], identifies the x's in the i-th row of T~ to y,. 

Linearization turns out to be an inverse operation to S~r~%~, as we now show. 

The symmetric group S, acts from the right on (any) monomial of degree n by 

permuting places: r / ~  S, 

(y~, • • • yi~)r~ = yi~,,," • • y~,°,. 

This action extends linearly to homogeneous polynomials of degree n. Denote  

by L the linearization operator.  It is determined up to a choice of "names"  for 

the new variables. We choose them so as to end in FS, .  L has the following 

property. 

L.2.1. If q ( y , , - . . , y , )  is an identity of some algebra A, then L(q )  is an 

identity of A. 

L is defined on monomials, then extended by linearity to polynomials. Let 

M ( y l , ' '  ", yh) be any monomial of degree n and let a~. = degy,(M), then there 

exists 7/@ S, such that 
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M ( y , , . . . ,  yn ) = ( y l  . . . .  y;t)n. 

Obviously the l inearization satisfies 

L.2.2. L ( M )  = L(y~ . . . .  Y~,'" n )  = (L(y~' . . . .  Y~,"))" n. 

In the special case that M ( y ) = y  ~, it is well-known that L ( y " )  = 

E, .~s .X~m"'x , . ( . )  ( - ~ E ~ s " o ' ) .  In the general  case, L (y~  . . . .  y~")= 

L~(y~,)- • • L, (Y~,9, where  the x-variables used by L.  and Lo are disjoint when 

u ~ v. Choose  
x ~ , ' - ' , x . ,  for  Ldy~ ' ) ,  

i.e. 

Thus, if 

and /?,a) 

x . , + . ' " , x . , + . ,  for  Ldy~-'), etc., 

a , '" ,  o'~S i(a al) 

E Xal+ 1 

2 

• • • x.,.a., etc. 

R,o~ = R¢o,....,~ = &,(1, • •., a,)  × S~.(a~ + 1 , . . . ,  a,  + a2) × " "  

(a Young subgroup)  

= E,~R,o,o', then 

L.2.3. L(y~ . . . .  y ~ ) = R t , ) ( - ~ l ~ ( a ) ' x ~ " ' x , ) a n d L ( y ~  . . . .  Y ~,"" "0) = tq(,)" rb 

NOTE. Even though -r/ is not unique,  L is independent  of its choice: 

y~ . . . .  y","" rl = y~ . . . .  y "h'" r ¢* f ir  ~ ~ R t . )  ¢* R(.~'O = R~.~r ¢* R~.)rl = Rtafl'. 

Lineari ty,  L.2.2 and L.2.3 imply: 

L.2.4. Let  q ( y , , - .  ",yh) be homogeneous  in each y, and let g ~ FS . ,  then 

L ( q ( y ) . g ) =  ( L ( q ( y ) ) ) g .  In particular,  let deg,, ( q ) =  a,, so there  is a g ~ F S .  

such that 

q ( y ) = y ~  . . . .  y~,. g, 

so L ( q ( y ) )  = (L(y~ . . . .  y~,,))g = l~(~)'g. 

Now turn to substitutions: Let  S{~.y)(xj)=y,,, l < j < - n ,  l < i j < = h ,  so 

S ~ . y } ( X , . . . x , ) = y ~ , " ' y ~ .  = y 7  . . . .  y~-~/ .  Thus Sa.y) determines  a ~ , " - , a h  

(hence Rc.~C S . ) a n d  the coset R~.~rt. (Clearly, S~.r)<'--~((a),R(.)r~)classif ies all 

substitutions.) It is easy to check that St~.~(x , .o~"" x . t . ) )=  y , , . . -y~ . .o r ,  so, by 

linearity we have 



Vol. 42. 1982  GROWTH FOR MULTIPLICITIES IN COCHARACTERS 69 

S.2.5. Le t  g ~ I S ,  - V , ,  then 

S~.y)(g ) = ( S(~.y)(x , " " x,  )) " g = y ~ . . . .  y ah~ " g. 

This clearly implies S~,y)(g~g2) = (S~.y)(gl))g2, g~, g2 ~ I S , .  

The  subst i tut ions S~,y)= S~r)  are def ined in [4, §3]. Since 

a~ = d e g , , ( S ~ ) ( x ,  • • • x , ) )  = length of the i- th row of T,, 

hence a~->_.. .  > ah. The  converse  is 

LEMMA 2.6. Le t  S<x.~)(x,... x , )  = y ~ . . . .  y ~ .  77 and  a s s u m e  a, >-_ . . .  >-_ a,. Le t  

h = (a~,. • . ,  ah ), SO A ~ Par(n) ,  a n d  def ine the tableau T~.o = 7",, on h as fo l lows:  

1 :[ j 
a t + l a ~ + 2  am+a2 

" ° ° 1  " 

then S~.y)= S~ .~" .  

PROOF. By definition, 

s ; S ~ , ,  : x .  ,~, ,  . . . ,  x .  ,co,:--> y ,  

" " " ,  X n - ~ ( a ~ + a 2 )  " - - )  y2 

S(x.y)(Xl" • • x , )  = y~ . . . .  y~,~. 7/, hence y7 . . . .  y~h = S~x.y)(x,." • x , ) ~  -~ = 

S(x.y)(x, ' o ) " "  x,-,(,)) = (S(x,y)(x~ 'o))) . . . . .  (S~.y)(X,-,~,~)). C o m p a r e  places in the 

two monomia l s  to verify that  S(x.y) = S?x.~". Q . E . D .  

NOTE. A C Pa r (n )  de te rmines  To = T~.o. G iven  a second tableau T~ (on A), 

there  exists (unique)  r~ E S, such that  ~T~ = To. 

LEMMA 2.7. L(S~y)(X,"" x , ) )  = fIRTh, where rlT~ = To. 

PROOF. T ~ = r l - ~ T o ,  so by 2.6, S ~ r ) ( x t . . .  x , ) =  y? . . . .  y~h-7/, hence  

L ( S ~ ) ( x ~ . . .  x,))  = L ( y ?  . . . .  y~,~)rt =/~( ,~r /=/~To" 7/. NOW To = r/T~, so Rr,, = 

r /Rr j / -1 ,  and RTort = rIRT: hence/~Tor/ = r//~r~. Q . E . D .  

The  tab leau  T~ defines the subgroups  Rr~, CT~ C_ S, .  D e n o t e  E~R~,o" = /~T, 

E~eC~(--  1)=or = (~r~, SO er~ = /~r~" Cn.  By [4, §1,3], ( ~  = g~ and S~y ) (g T , ) - -  

p(y . . . . ,  y~). 

Since 

X~ I(al+])  . ~ 

etc. 
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THEOREM 2.8. Let  71T~ = To (as above)  and write r~ S...(g~-~ (x, ,  • • . ,  x . ) )  = 

p ( y , , ' . . ,  y,),  then L ( p ( y , , . . . ,  yh)) = ~er~. 

PROOF. 

L (p(y  )) = L (S~y,(gr~) ) ~ (L (S~ , , ( x ,  " " x ,  )))gr, 

- - -  ~TRr* " gr, = 71er~. 
12.71 

REMARK 2.9. F ( y , "  • ", yh) 3 W. = the homogeneous polynomials of degree 

n, as FS. right module. Given at + " " • + a ~ ,  ----- n ,  let W~,~ = W~,, .~,) be the FS. 

submodule of the polynomials q(y)  homogeneous in each y~, and degy, q = a~, 

then IV, = ~ ) ~ ) W ~ ) .  By L.2.4 and S.2.5, L : W~,)---> V,  =-FS, and 

S<~.r~: V. ---> W~o, (&~.y)~->((a), R(°,~)) are module homomorphisms. Some com- 

positions L o S~x,r) are calculated by 2.8. One can easily calculate S(x.y)oL. 

§3. A characterization of mA 

The following part strengthens [4, theorem 3.5] to a characterization of 

the m, 's  in a cocharacter. Let A be a P.I. algebra, Q = I ( A ) C F ( x )  its 

identities and X, ( A )  = E,  Epar~.) m,x~ its n-th cocharacter. To a tableau TA (on h) 

corresponds era = er~ ( x ,  " ", x ,  ), and by [4, 1.3], S ~y)(er, (x )) = 

IRaqi" pr . (Y , , ' "  ", y,)  (h = h(A)). 

THEOREM 3.1. With the above notations, m,  equals the m a x i m a l  number  of  

(s tandard)  tableaux T , , . . . , T ,  (on A) with T,*--~ei=e~(x),  S~.y)(e~(x))= 

[Rr, [ " pi(y  ), such that p~(y) , . . . ,p~(y)  are linearly independent  modulo O (in 

F ( x ) ) .  

PROOF. (a) (The proof of this part is almost identical to that of [4, theorem 

3.5].) Assume T , . . . , T ,  are tableaux such that their corresponding 

p~ (y ) , . . - , p , ( y )  are linearly independent modulo Q. If we show that 

FS,  e, = FS.e~ and FS, e~ A O = O, 
i = l  i = l  

then m, -> s. Both follow once we prove: If E[=~ b~e~ E Q, b~ E FS. ,  then b,ei = O, 

i = 1,. •., s. So, let E;=t bte~ E O and assume b~et ~ O. There exists c E FS.  such 

that cb~e~ = e~. Write ct = cb ,  i = 2,.  •., s, then e~ + c2e2 + • • • + c,e, E (9. Apply 

S~y) and [4, 3 4] to obtain IR~,[" Pt(Y) + azp2(y)+ • • • + a,p~ (y) E Q, contradict- 

ing the assumed linear independence modulo O. [Note: No assumption is made 

of T~ being standard.] 
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(b) Write m, = s. Let I, C FS, be the two-sided ideal corresponding to A, and 

write O~ = L N 0 .  By the theory of S,-representations and by [3, ch. IV, 

theorem 1] there are s (standard) tableaux T , , . . . ,  T, (on A) with corresponding 

e,, • •., e, such that 

( .)  I~ = O~ ~) fS.e,  . 

Write S~y)(e,)= I RT, [" p, (y),  1 _--< i =< s, and assume E~=~ a~p, ( y ) ~  O. Note that 

all p , (y)  belong to the same W(a,. Apply L!  By L.2.1 and Theorem 2.8, 

ET=~ a~(~)e~ E 0 for some ~7~, .. ., rl('~E S,, so by (*), a~ . . . . .  a, = 0. 
Q.E.D. 

The last theorem has the following application for F..: 

LEMMA 3.2. Let A E P a r ( n ) ,  A'@Par(n ' ) ,  n < - n  ', A = ( w 4 , ' . . , w O < = A  '= 

(w~, . . . ,  wl) (Definition 1.1) with w4+2 =< w~, then m, <= m,,. 

PROOF. Write m~ = s, so there are s tableaux T , , . . . ,  T, (on A) with their 

corresponding p ~ ( y ) , ' . ' , p , ( y )  linearly independent modulo O. Let IX = 

( w ; -  w4,'" ", w~-  w0. By the results of [4, §3] there exists a tableau T~ (on Ix) 

whose corresponding p,  (y) is an F,-non-identity. 

Let T ~ = T ~ + ( T ~ + n ) ,  j = l , . . . , s .  T'j are tableaux on ) t+Ix  =,~',  with 

corresponding p'~(y). By Corollary 1.4 there exists d > 0 such that 

p j ( y ) = d p j ( y ) . p , ( y ) ,  j = l , . . . , s .  

By the primeness property of O ='I(F2), [1], p '~(y) ,- . . ,p ' , (y)  are linearly 

independent modulo O. Therefore  by Theorem 3.1 (m~ = ) s _-< m~.. Q.E.D. 

§4. A polynomial bound for the ma's 

Given (large) n, we give one upper bound to all the m, 's  of X, (F2), a bound 

which is a polynomial in n. By a tensor product technique, the result is extended 

to all rings of matrices. 

NOTATION. Given n, let t = t ( n ) =  16n2+ 10n and define 

Par(t) ~ Ix(n) = (4n 2 + 4n, 4n 2 + 3n, 4n 2 + 2n, 4n 2 + n). 

NOTE. )t < Ix(n) for any )t EPa r (n ) ,  hence for x,(F2), mx <= m,~,). The 

asymptotic results of [5] are applied to give a lower bound for d,,,~, then an 

upper bound for m~,).  

LEMMA 4.1. There exist a constant c and a large enough N such that for all 

n -> N, d~(,i > c .  ( l / t )  9/2. 4' (t, Ix(n) as above). 
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PROOF. Let a = 1 and 8 = 1/8 in [5, 1.1], then choose N large enough such 

that F.I . I  (there) works if t(n)>= N. N <= n should also be large enough for the 

following asymptotic arguments: 

Write /z (n) = (t/4 + c~ V t ,  . . ., t /4 + c, ~/t),  so 

c ~ = 5 - 2 , / "  n _ 5 - 2 , /  and cj-cj+j-~-i  
2 ~/16n2+ 10n 8 4 

Thus /~(n)E A4(t, 1,~) and by F.I.1, 

d,, ,)  = y4" D(c l , "  • ", c4)" e -2~q ...... ~)" • 4'. 

Now refer to [5, note 2.11: P,(1, 1/8) is compact, hence D ( c ~ , . . . ,  D4)e  -2(q ...... ~) 
I ° 4 t" has a minimum M ~  0 on it. Thus for large enough n, d,~,) > ~_3'4" M .  (l/tf/2 

Choose c = ½T4M to complete the proof. Q.E.D. 

LEMMA 4.2. Let  N = N (1, 1/8) as above. For some d > 0, m,( , )  < dt 3 for all 

t (n) ,  n ~= N. 

PROOF. For a large enough t, 

(_1t)9/2. 4 ( } )  ''~ 
m,~,), c • 4' < m,~,) • d,~.) _-< c, (F:) ~< • 4', 

[Lemma 4.1] [4, theorem 5.4] 

hence m~(,) < (4/c "vT~) • t 3. Choose d = 4/c k / ~ .  Q.E.D. 

It is well-known that ]Ah(n)l _--< ("+",-~) < n"-), [2]. By Lemma 3.2 we deduce 

COROLLARY 4.3. I f  n is large enough, then for all A ~ Par(n), m~ < d • t 3 = 
d .(16n 2+ 10n) 3_-< d ' n  6, hence E~A,(,)m~ < IA4(n)l 'd ' (16n 2+ 10n) 3< d . n  3. 

(16n2+ 10n)3: the sum of multiplicities is polynomially bounded. 

REMARK 4.4. Write n = 6 1 + r ,  0--<r_-<5, l= [n /6 ] - - -n /6 ,  and let A = 

( 3 1 , 2 1 , 1 + r ) = ( w 4 , . . . , w , ) ,  where w~=0, w ~ = w 2 = l  and w ~ = l + r .  By [4, 

theorem 3.22], m~ => (w~ + 1)(w.,- 1)(w3+ 1) = (l + r + 1)(l - 1)(l + 1)~- 13 -~ 
I 3 3 *S (~) n , for large n. Thus some (many) m~ of X. (F2) also have a lower bound of a 

polynomial rate of growth. For k _-> 2, X, (F2) _-< X, (G) ,  hence the same is true for 

any X, (G).  

We now generalize Corollary 4.3 to all matrix rings Fk. 

THEOREM 4.5. Let  X. ( G  ) = E~ ~A~,_(,) m~x~. There exist an exponent  e = e (k  ) 

and  a constant c such that ?£~A~:~,~m~ <= c • nL In particular, mx <= c 'n  ~" for all 

h. E Ak-'(n) where c ' >  0 is another constant and e'<= e a smaller exponent. 
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PROOF. It  is enough  to p rove  for  large n. 

(a) A s s u m e  k = 2 t and p rove  by induct ion on l, the case l = 1 being Corol la ry  

4.3. Prove  for  l + 1: 

F2,+,=F2,®F2 ~ x.(F2,*,)< x.(F2,)®x.(F~).  
[6, t h e o r e m  8] 

Induct ion  and Corol la ry  4.3 imply 

x.(F2,)@x.(F2) < ~ el = cln X.@ E d'n6x~ 
vEA41(n) /~ ~A4(n) 

= ctd'rl~'+6 " E E X. ~ X~,. 
vEA41(n) ~ EA4(n) 

By [7, l e m m a  1] there  are e2, c2 such that  for  all v •A4, (n) ,  /z E A4(n), 
< • r te2 • X~@X,. = E,~A.,+,<.)C2 X*, hence 

Xn ( F 2  TM) ~ C1C2 dtlle'+6" l'l'e2" IA,, (n)l" IA,(n)l" 

A~Ak2(n)  A~A4t+I(n) 

e = C ' r t ,  

Thus  

E Xx. 
A ~A41+l(rl) 

mA <= clc2d'" ~'~ el+6 " n e2 " 1"141-1 " /,[3 . ~.[4/÷1-1 

where  c = c~c2d' and e = el + 6 + e2 + 4 t - 1 + 4 TM - 1 + 3. 

(b) The  genera l  case follows easily: For  k arbi t rary ,  choose  l such that  k =< 2 ~. 

Since Fk <= F:,, F~ satisfies m o r e  identi t ies than  F2,, hence  X, (Fk)=< X-(F2,). 
Q . E . D .  

REMARK 4.6. Since X, (F2)=< X, (Fk), R e m a r k  4.4 implies that  some  m~'s  in 

X, (Fk) have  a lower  bound  which also has a po lynomia l  rate  of growth.  Thus  

E~ m~ = L,  (Fk), the colength of Fk, has lower  and uppe r  bounds  of po lynomia l  

rate  of growth.  

We think tha t  the p rope r ty  of  a po lynomia l  ra te  of  g rowth  of L ,  ( A )  is shared  

by m a n y  o ther  algebras.  
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